Ibn KHaldoun-Tiaret University - Department of Physics

Remplacement exam Maths $2 \quad$ lasts 1:30 minutes Mai 20, 2024

Solution 1 1. We have

$$
\begin{aligned}
\operatorname{det} M_{\alpha} & =\operatorname{det}\left(\begin{array}{ccc}
1 & 3 & \alpha \\
2 & -1 & 1 \\
-1 & 1 & 0
\end{array}\right) \\
& =1\left|\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right|-3\left|\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right|+\alpha\left|\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right| \\
& =\alpha-4 \ldots \ldots \ldots . . \mathbf{1 . 5}
\end{aligned}
$$

2. the map f associated with M_{α} is bijective if and only if $\operatorname{det} M_{\alpha} \neq 0$ i.e $\alpha \neq 4 \ldots \ldots . .1 p t$
3. since $\operatorname{det} M_{\alpha} \neq 0$ i.e $\alpha \neq 4 . \ldots . .$.0.5 $\boldsymbol{p t}$ then M_{α} have an anvese M_{α}^{-1} and

$$
\begin{aligned}
M_{\alpha}^{-1} & =\frac{1}{\operatorname{det} M_{\alpha}}\left(\operatorname{com} M_{\alpha}\right)^{t} \ldots \ldots \ldots \ldots . \boldsymbol{0 . 5 p t} \\
& =\frac{1}{\alpha-4}\left(\begin{array}{ccc}
-1 & -1 & 1 \\
\alpha & \alpha & -4 \\
\alpha+3 & 2 \alpha-1 & -7
\end{array}\right)^{t} \\
& =\frac{1}{\alpha-4}\left(\begin{array}{ccc}
-1 & \alpha & \alpha+3 \\
-1 & \alpha & 2 \alpha-1 \\
1 & -4 & -7
\end{array}\right) \ldots \ldots \ldots . \mathbf{p t}
\end{aligned}
$$

The formula of f_{α}^{-1}
Let $u(x, y, z) \in \mathbb{R}^{3}$, we have

$$
f^{-1}(x, y)=f^{-1}\left(x e_{1}+y e_{2}+z e_{3}\right) \ldots \ldots .1 p t
$$

since f_{α}^{-1} is a linear map we deduce that

$$
\begin{aligned}
f^{-1}(x, y, z) & =x f_{\alpha}^{-1}\left(e_{1}\right)+y f_{\alpha}^{-1}\left(e_{2}\right)+z f_{\alpha}^{-1}\left(e_{3}\right) \\
& =\frac{1}{\alpha-4}\binom{x\left(-e_{1}-e_{2}+e_{3}\right)+y\left(-e_{1}+\alpha e_{2}+\alpha e_{3}\right)}{+z\left((\alpha+3) e_{1}+(2 \alpha-1) e_{2}-7 e_{3}\right)} \ldots \ldots .1 \boldsymbol{p t}
\end{aligned}
$$

then

$$
\begin{align*}
& f^{-1}: \quad \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
& (x, y, z) \longmapsto \frac{1}{\alpha-4}(-x+\alpha y+(\alpha+3) z,-x+\alpha y+(2 \alpha-1) z,-x-4 y-7 z) .
\end{align*}
$$

pt
Solution 2 We have Compute the limited development up to order 3 at the neighborhood of 0 for f such that

$$
f(x)=\ln (1+\tan x) .
$$

According to the table of limited developments, we have:

$$
\ln (1+u)=u-\frac{1}{2} u^{2}+\frac{1}{3} u^{3}+u^{3} \varepsilon(u) \ldots \ldots .0 .5 \boldsymbol{p t}
$$

and

$$
\tan x=x+\frac{1}{3} x^{3}+x^{3} \varepsilon(x) \ldots \ldots .0 .5 \boldsymbol{p t}
$$

then

$$
f(x)=\ln (1+\tan x)=\ln \left(1+x+\frac{1}{3} x^{3}+x^{3} \varepsilon(x)\right) \ldots \ldots .0 .5 p t
$$

Substituting $u=x+\frac{1}{3} x^{3}+x^{3} \varepsilon(x),\left(\lim _{x \rightarrow 0} u=0\right) \ldots$..... $\boldsymbol{0 . 5 p t}$
We get Calculating u, u^{2}, and u^{3} up to order 3 in x, we obtain

$$
\ln (1+\tan x)=x-\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+x^{3} \varepsilon(x) \ldots \ldots .2 \mathbf{p t}
$$

Solution 3 Let $x=a+b-z$ then $d x=-d z \ldots \ldots .0 .5 p t$

$$
\begin{aligned}
\int_{a}^{b} x f(x) d x & =-\int_{b}^{a}(a+b-z) f(a+b-z) d z \ldots \ldots . . \boldsymbol{0 . 5 p t} \\
& =\int_{a}^{b}(a+b-z) f(z) d z \ldots \ldots \boldsymbol{0} . \mathbf{5 p t} \\
& =(a+b) \int_{a}^{b} f(x) d x-\int_{a}^{b} x f(x) d x \ldots \ldots . \boldsymbol{0 . 5 p t}
\end{aligned}
$$

then

$$
\int_{a}^{b} x f(x) d x=\frac{a+b}{2} \int_{a}^{b} f(x) d x \ldots \ldots .1 \boldsymbol{p t}
$$

2. The value of

$$
I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

taking $f(x)=\frac{\sin x}{1+\cos ^{2} x} \ldots$...O. 5 pt
and we remark that $\frac{\sin (0+\pi) x}{1+\cos ^{2}(0+\pi)}=\frac{\sin x}{1+\cos ^{2} x} \ldots . . \boldsymbol{0 . 5 p t}$
then

$$
\begin{aligned}
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x & =\frac{0+\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x \ldots \ldots . \boldsymbol{0} \mathbf{5 p t} \\
& =-\frac{\pi}{2}[\arctan (\cos x)]_{0}^{\pi} \ldots \ldots \boldsymbol{0} \mathbf{5 p t} \\
& =-\frac{\pi}{2}\left(-\frac{\pi}{4}-\frac{\pi}{4}\right)=\frac{\pi^{2}}{4} \ldots \ldots . \mathbf{p} t
\end{aligned}
$$

3. We have

$$
\begin{equation*}
x \frac{d y}{d x}+y=x y^{3} \quad \text { i.e } x y^{\prime}+y=x y^{3} \tag{1}
\end{equation*}
$$

This is a Bernoulli differentiable equation 1, where $\alpha=3 . \ldots . .0 .5 p t$
We first divided the equation throught by y^{3}, thereby expressing it in the equivalent form

$$
\begin{equation*}
x \frac{y^{\prime}}{y^{3}}+\frac{1}{y^{2}}=x \ldots \ldots .0 .5 p t \tag{2}
\end{equation*}
$$

by using the change variable $z=y^{1-\frac{1}{2}}$, then $z^{\prime}=\frac{1}{2} \frac{y^{\prime}}{\sqrt{y}} \ldots \ldots . \boldsymbol{0 . 5 p t}$ the equation 2 transforms into

$$
\begin{equation*}
x z^{\prime}-2 z=-2 x \ldots . .0 .5 p t \tag{3}
\end{equation*}
$$

the solution of linear differential equation of 1 st order 3 is

$$
z=C x^{2}+2 x \ldots \ldots .0 .5 p t
$$

Thus we obtain the solutions of ?? in then form

$$
y=\frac{1}{\sqrt{C x^{2}+2 x}} \ldots \ldots . \boldsymbol{0} .5 p t
$$

